& J7v3

Developer Documentation

API version: 0.9.1
Last update: 2013/10/20

https://github.com/jzy3d/jzy3d-api/tree/0.9.1

Summary

(@ g F=T o] (= g I O 4 =T o (R 6
V=TT I eTe] g] oTo T aT=T 0 € 6

L T 11RO 6
RUNNING CRAIS ... e a e e e e e e e e 7
DeStroying ChartScooo oo e e e e e e e e e e e e e e e 7
(O P o (=T b I = 11 7= o] = R 8
L@ Y=Y V1= PSPPSR 8
BaSE fEAIUIES ... aaaaaaes 8

D = 1T7= o] R 8
WireframeEabIescooo oo ———————— 9

(@7 0] g] o071 (=T U PPPRPRR 9
ENHGNTADIES ...t 9
SEIECIADIE ... e e e e e e e e e e e earaar———_ 10

o o 1= |] = PP 10
L0 =T o SRS UPRRPRRR 10
Faster drawables with Vertex Buffer ObjJects..........cceeiiiiiiiiiiiiii 10
5 RS ERPPUSURPR 11
B A = T L= Y SRS PPURPRR 11
Drawable teXE.....ccooiieeeeee e aaaa e 11
Chapter 3 : Drawables for Chartscooo v 12
R T0 7= Vo= SRR 12
Surface defined by @ fUNCHON ... 12
Surface defined by iNPUt POINESooeiiiiiiiie e 14
Surface defined DY POIYGONSoooiiiiiiie e 15

R Toz= 1 Y PP 15
Histograms & bar Charts...........ccoiiiiiii e 15
(O gF=T o] (=1 g S @01 (o] 4 o 1 7= o £ S 16
OVEBIVIBW ...t e e ettt e e e e et e ettt et ettt e s e e e e e eeeeeeeeeeeeeeeassss s e e eaaeeeaeaeeenees 16
Apply a colormap t0 @ drawable.............coiiieiiiii i ——————————— 17
Create a colorbar |€geNd............ooiiiiiiii s 17
Chapter 5 1 LayOULcooooieee e e e e e e e e e e e e e e e e 18
VIBW LAYOUL ...ttt et e e e e e e e e e e e e e e e s e e aanb b e aeeees 18
1= D 0 > PP 18

Lo [UE=] 414V PP TP 18
Text emMbedding ... 18

Orthogonal and perspective projeCtionScccoeeiiieeiieiiiieeeeerre e 19

AV AT oT0) 0 153 1= 1| 1€ T TP U RO T TR R 19

BT T2 0T | o | S 19
oS A (=T o 1= = = PP 19
BACKGIOUNG ...t e e e e e e aaeens 19
T] {0 1= SRR PPPURPRRR 20

(O3 0= = 10T | PSPPI 20
AXIS LAYOUL ...ttt et et e e e e e e e e e e e e e e e 21
(O gF=T o (=T gl G I @70 o1 (o1 U T o] F= T o -SSP 22
OVEBIVIBW ...t e e e e et e e e e e ettt e et e ettt s e e e e e e eeeeeee et eeeeeassss s e s eaaeeeaeeeeanees 22
(@70] 01708 r= 11 (] o PP PPPPRP 22
(@7 0] a1 (oW Tl 10T RSP 23
1= Yo IO | (] 23
HeIght Map CONtOUN ... e e e e e e e e e e e e e e e e e e 23
(O gF=T o] (=T g A O o 0] 11T SR 24
MOUSE CONIONIEIS ...t e e e e e e e e e e e e et e e e e e e aaaaeeaeees 24
CoNtrolliNG CAMETAueiiieieiiiii ettt a e e e e eeees 24
Interaction With drawablesiiiii i 24
Threaded CONIIOIIEIS i e e e e e e e e e e e e e e eeeeeeeannnes 25
Keyboard CONMIOIIEIScooiii e e e e e e e e e 25
Chapter 8 : Interactive ODJECESuuiiiiiiiiiie e 26
OVEBIVIBW ...t e e e e et e e e e e ettt e et e ettt s e e e e e e eeeeeee et eeeeeassss s e s eaaeeeaeeeeanees 26
PiICKEA ODJECES ..o e e e e e e e e e e e 26
Selectable ODJECES ... 27
(O gF=T o (=T e IS Tot=T o T= Yo | =T o] o P 28
L= 03 {0 0.1 USSP RRRRRR 28
Transformations for Drawables................eiiiiiiii e 28
Animating a drawable transformationccccooi i 28
Chapter 10 : ANIMALtIONSuiiiiiiiiei e e e e e e e e e e e s e e e e e aeaaeeeeees 29
(T g aE=T o] o] o JSTU Ly 7=t =S RS EERPP 29
Adding and removing drawables dynamicallycc.uuuiiiiiiiiiiiii e 30
(O aF=T o (=Tt Bt I I =T] 0 Y= 1= o YRS 31
Handling transparency by sorting poIYgONScoooiiiiiiiiiiiiie e 31
Handling transparency with a depth peeling algorithmcccoiiiis 31
HINtS With tranSParEnCyooo e a e 31

(O g F=T o] (=t A Y 1Y | £ RSP 32
BT =T o | (O 32
View point Changed ... 32
View point reached top or bottomMccoooiiiiiiie 32

CONTT Ol BT BV ENES ..ot e e e e e e e e e e e e ———_ 32

DrAWADIE BVENES ..ottt e e e e et e e et e e 32

Chapter 13 : Maths and statistics PaCKageoooiiiiiiiiiiiiieee e 33
(@7 0T] o |10 =1 1= 33
BoUNAING DOXES ..o 33
StatistiCs and array PrOCESSOIScciiieeiiieieeeeeet e e e e e e e e e e e e eaeeaeees 33

(oo I P4 Y26 To o 4 F= 11 g1 N4 = SRS PPPURPRRR 34
0rg.jzy3d.maths.StatiStiCScooviiieeee e 34
(ol o I 74 Y26 To I 4 F= 11 1= 00 1 (] SRS PPPURPRRR 34

Chapter 14 : Integrate the chart in your application............cccccoeeeiiieieieeccccce e 35
UNderstanding CanVASES........ccccuuuuiiiiiiiiiii ettt e e e e e e e e e e s bbbt e e e e e e e aaaaaaeeeeeeeaaanns 35
F TV =T o] o] [o= 1o O 35
N PP EPUPRPPRRRR 35
ATV T Te JE=T o] o] 1= 4[] o 1< PP 35
YAV =1 o] o1 o= 11T o =P 35
Offscreen appliCatiONS.........ueeiee et a e e e 36
Yo7 (== 0 151 o o) PP 36
TESHING CNAITS ...ttt a e e e e e e e e e 36

Chapter 15 : Component INJECHIONccooiiiiieeeeeee e e e e e e eees 37

Chapter 16 1 RENAEIING ..ot e e e e e e e e e e e e e e e e e 38

Chapter 17 : Going further with OpenGLoviriiiiiiiie e 39

Legend

Note
Java code
Chapter reference

Schemas

We will use the following drawing convention for schemas

Class Interface Group of class

By group of class we mean a set of tool that will be detailed later in another schema of this manual.

To explain the which building blocks are used by a class, we draw a line finished by a dot near the field

class.

To explain inheritance or implementations, we use normal line, where the parent class or interface stand on
top or on the left

IParent Implementation

To show a sequence of components, we use lines with arrow:

First Second

A\ 4

Chapter 1 : Charts

Main components

A Chart is a convenient object gathering what you need to plot and control 3d content easily:
* aScene, backed by a scene Graph, that stores AbstractDrawable objects.

* a View, that handles the scene layout and annotations: axes, tooltips, post renderers, background
image, etc. The default View has children classes that are also able to manage several image
sources (Open GL scene, Java 2D colorbars, etc) to be laid out in a single Canvas.

Controllers +— Chart —{ Canvas

View L‘ ’l Scene

Camera +— Lights
AxeBox +— —+ Graph
PostRenderers +— L+ Drawables
Colorbar +— IColorMap Mapper
Tooltips +— ColorMapper Tesselators
Grids

To add drawable elements to the chart, simply call:
chart.getScene().getGraph().add(drawable);

To get the view and customize the chart appearance, call:

View view = chart.getView();

Quality
The chart’s Quality let you configure the tradeoff between the performance and the quality of your chart.
Chart’'s Quality is configured in its constructor and can't be changed at runtime. Four quality modes are
available:

* Fastest: No transparency, no color shading, just uses the depth buffer.
* Intermediate: Fastest + Color shading, usefull for interpolated colors on polygons.

* Advanced: Intermediate + Transparency (Alpha blending + polygon ordering in scene graph).
Note: depth buffer is desactivated.

* Nicest: Advanced + Anti aliasing on lines and polygons' wireframe.

Quality is also used to define wether the chart should render continuously or on demand. One can disable
the default continuous rendering by calling:

quality.setAnimated(false);

One can trigger rendering manually using any of the following method which are equivalent:

chart.render();
chart.getView().shoot();
chart.getCanvas().forceRepaint();

Running charts

Chart initialization let you define its Quality and the target windowing toolkit of its canvas. Windowing
toolkits may either be awt, swing, newt, or offscreen. To setup your desired mode, simply build the chart
as follow:

Chart chart = AWTChartComponentFactory.chart(quality);
As it name suggests, the SwingChartComponentFactory delivers charts for Swing. At this time, the preferred
canvas is Newt, and is obtained by initializing a chart as follow:

Chart chart = AWTChartComponentFactory.chart(quality, “newt”);

Other factories deliver charts with dedicated components, such as ContourChartFactory, using a custom
ContourAxeBox able to draw contour level on its ground face. See chapter Component Injection for more
information on factories.

The utility class ChartLauncher provides static methods to open a ready to use chart window with
configured controllers:

* openChart(..): opens a chart frame with enabled mouse, keyboard and thread controller.
* openStaticChart(..): open a chart frame with no controller.
* configureControllers(..) : enables controllers on a chart.
* screenshot(..) : save a screenshot to the given file.
e frame(..) :create a Swing or AWT frame according to the chart.
* openLightEditors(..) : opens light editor for a chart using lights.
However, you will most probably wish to integrate your chart in an existing application and select appropriate

controllers. See dedicated chapters “Controllers and Integrate the chart in your application.

Destroying charts

To safely destroy all resources that may be held by a chart, it is recommended to call the dispose() method
of the chart that will in turn call the dispose() method of all its children. This ensures all listeners get
unregistered, and all OpenGL or other native resource get destroyed.

Next section will discuss how to add basic drawable objects to the chart. If you want to immediately draw
surface, scatter, or bar charts, then you may go to chapters Drawable for charts.

Chapter 2 : Drawables

Overview
Drawable objects are organized into a hierarchy that reflects features they offer. The below section explain
features provided by Drawables, Wireframeables, and Composites objects.

AbstractDrawable
I
[[[
Point AbstractWireframeable AbstractComposite
I
I I |
Triangle | Enlightable 1— Selectable Pickable — Shape
Quad] Sphere* [Sphere* Sphere* [
Polygon [Tube] Tube Polygon
Scatter [Disk o Point -
LineStrip [Polygon — Texture [—
Sphere []
Disk] DrawableTextWrapper
Cylinder [
Tube]
InterpolatedLineStrip

* Any shape (e.g. Sphere) implementing Enlightable, Selectable, or Pickable, will have as actual class name
EnlightableSphere, SelectableSphere, or PickableSphere

Base features

Drawables
AbstractDrawable objects make use of OpenGL primitives. JOGL exposes a GL context allowing to call
OpenGL native methods. Thus, a drawable object is expected to implement the method:

public void draw(GL gl, GLU glu, Camera camera)
where:

* gl isthe GL context of the canvas in which you render your drawables.
* gluis a global GLU instance provided by the View.
* camera is a Camera instance provided by the View. It let you define rendering relative to the camera
position.
Let's dive into the draw() method implementation of a Point object:
public void draw(GL gl, GLU glu, Camera cam){

if(transform!=null)
transform.execute(gl);

gl.glPointSize(width);
gl.glBegin(GL.GL_POINTS);
gl.glColor4f(rgb.r, rgb.g, rgb.b, rgb.a);
gl.glVertex3f(xyz.x, Xyz.y, Xyz.z);
gl.glEnd();

As shown by the above piece of code, drawing imply first to apply a current transform to the object which is
most frequently provided by the View. Then the implementation simply calls the required open GL functions
to render the object, according to its properties (position, color, etc).

Objects implementing AbstractDrawable have the following properties available:

* Transform
* BoundingBox3d
* Legend
* |s object displayed
* |slegend displayed
* DrawablelListener(s)
A drawable object may then be
* singled colored, and implementing ISingleColorable
* colored by a a Colormap, and implementing IMultiColorable

The actual geometry of the object must be defined by its implementation. As each object may have its own
datamodel, there is no interface method through which you should build your own drawable, but as a
convention, Jzy3d uses setData(..)

Wireframeables
AbstractWireframeable objects have additional properties:
* Wireframe color
* Wireframe width
* Wireframe displayed or not
* Face displayed or not

Among the various wireframeable object, some of them of advanced GL features, especially Polygon that
uses:

* A polygon mode: FRONT / BACK / FRONT_AND_BACK (default). When culling is enabled for
rendering, FRONT polygons are rendered when they are facing camera only, whereas BACK
polygons are rendered when there back is facing to the camera only.

* A polygon offset mode: (ON / OFF). Ability to very slightly change the polygon face and wireframe
position at rendering to avoid pitfalls with the Open GL Z-Buffer when the chart is not enabled for
alpha.

Composites

AbstractComposite are collections of other drawable object. The purpose of this class is to provide an
implementation that delegates all above mentioned properties setting to its children. Among the different
available composites, CompilableComposite is able to compile its GL work into a GL display list for faster
rendering. It is especially usefull for large surface such as chromatograms (see).

Enlightables
AbstractEnlightable objects basically hold as properties those provided by OpenGL concerning lights:
* Material emission color
* Material specular reflection color
* Material diffuse reflection color
* Material ambient reflection color

e Material shininess

Selectable
Drawable objects that implement Selectable are able to

* process(..) and hold the result of their own 2d projection on the screen
* Compute their convex hull

Projection of selectable objects is scheduled by a dedicated SelectableView. See chapter “Interactive
objects” for more information.

Pickable
Drawable objects that implement Pickable are simply able to store an object ID that is used to identify
which objects stand within a given small region around the mouse. See chapter “Interactive objects” for more
information.

Textured
Texture support lets you build drawable objects based on X, Y, or Z
planes holding a texture.

One can use a TextureCube, and a TexturedCylinder (that
supports textures on top and bottom but not on the edge, as a
cylinder edge is not a plane).

Masks

Masks are PNG images made of white pixels describing the pattern
you want to draw, and translucent pixels elsewhere. Using a pair of
masks, one can build a face symbol and its negative masks (the one
having white pixels where the primary symbol mask has translucent
pixels), and apply dynamic coloring on the masks. With that feature,
you may edit a catalog of drawable skins, and inject them as Jzy3d
drawables. Here is how one can setup a cube volume with masks
and coloring:

SharedTexture t1

TextureFactory.get(«data/textures/masks/sharp-bg-100.png»);
SharedTexture t2 TextureFactory.get(«data/textures/masks/sharp-sym-100.png»);
MaskPair mask new MaskPair(tl, t2);

TexturedCube cube = new TexturedCube(coord, color, color.negative(), mask);
cube.setAlphaFactor(0.8f);

Faster drawables with Vertex Buffer Objects

All above mentionned primitives involve sending lot of geometrical instructions to the GPU each time the
chart must be updated, which happens continuously. For simple objects such as medium size surface, it is
not a problem at all, but when working with a 1 million polygon objects, the chart rendering is slowing down.
Vertex Buffer Objects are able to store the whole object geometry in the GPU memory at the beginning of the
program, and then query transforms or rendering very efficiently without intense communication between
CPU and GPU.

DrawableVBO is a base implementation allowing to send single colored objects out of .OBJ file or .MAT files.
As reading such file must occur when a GL context is available, one must use a IGLLoader (such as
OBJFilelLoader or MatlabVBOLoader) that is able to mount the object geometry to the GPU once the
program initialize the GL contexts.

See VBO in action in , and compare rendering speed with
relying on same files but using non VBO rendering.

Text

Text renderers
The API provides few utility classes to deal with Strings to be rendered at a given 3d coordinate, that will
always face the camera whatever the viewpoint.

On top of all text related classes hierarchy stands the ITextRenderer interface. It will show you that all text
renderers support:

* atext color

* a horizontal alignement (left, right, or center)

* a vertical alignement (top, ground, center, bottom)
* an 2D offset, relative to the screen

* a 3D offset, relative to the scene

Looking at the interface, you may also notice that calling drawText(...) will let you retrieve a
BoundingBox3d, that lets you know the actual space occupied by the text with the current scale and
viewpoint.

The two first text renderers, TextBillboardRenderer and TextBitmapRenderer share these common
features:

* they do not resize when the scene scale changes.

* they are made of a single non resizable font

* they render ASCII characters (a square will be displayed for non supported characters).
The JOGLTextRenderer is different:

* textis resized when the scene scale changes.

* it supports any java Font

* it supports a ITextStyle.

ITextRenderer AbstractDrawable

[
L AbstractTextRenderer + DrawableTextWrapper

+—
+—

— TextBillboardRenderer DrawableTextBillboard

— TextBitmapRenderer DrawableTextBitmap

L] JOGLTextRenderer

Drawable text
One may wish to treat texts as standard 3d drawable objects. The DrawableTextWrapper utility let you
embed a renderer to setup text, alignement, offsets and color through properties.

See the dedicated DrawableTextBitmap and DrawableTextBillboard that wrap the text renderers
mentioned by their name.

Chapter 3 : Drawables for charts

Surfaces

There are several ways to build a surface:
* providing its mathematical form, with an X and Y range.
* providing input points that should be used to build the surface polygons.
* providing input polygons that define the surface.

Surface defined by a function

The simplest way of providing data to plot is to implement a Mapper, which basically represents a
mathematical function to be used by a GridBuilder. The mapper generates the input coordinates that allow
a Tessellator to build polygons :

Mapper

\ 4

GridBuilder ———| Tessellator Shape

Range

This sequence can be customized by any other strategy as soon as one is finally able to build a collection of
Drawable obiject.

Mappers
A Mapper is an abstract class that requires its method f(double x, double y) to be implemented. The
most simple mapper implementation may implement the mathematical function as follow:

Mapper mapper = new Mapper(){
public double f(double x, double y) {
return Math.sin(x)*Math.cos(y);
}
}s

Note that although a Mapper let you use double types for x, y and z, the Coord3d structure used by all
drawables holds float values. The reason is that float precision is largely sufficient for the purpose of chart
rendering, and uses less memory for large number of Coord3d.

The BufferedImageMapper is a Mapper implementation returning z values computed from the pixel colors of
an image, where each {x,y} is a pixel index.

public double f(double x, double y) {
if (x == Double.NaN || y == Double.NaN)
return Double.NaN;
int rbg = image.getRGB((int) x, (maxRow) - ((int) y));
float red = (float) ((rbg >> 16) & OxFF) / 255.0f;
float green = (float) ((rbg >> 8) & OxFF) / 255.0f;
float blue = (float) ((rbg) & OxFF) / 255.0f;
return ((double) ((red * ©.3f) + (green * 0.59f) + (blue * 0.11f)));

}

See the in package

Svm3d' is an extension allowing to define mappers through a
set of training points. In other word, on can do 3d surface
regression on a set of input points by using SvmMapper.

The green points on the right side picture form a training set for
a SVM regression model. Once this model is trained, it is able
to return a Z value for any point in {X,Y} space:

public double f(double x, double y) {
return svm.apply(x, y)[@];

"0 400000
“—0.200000

“I——0.00008

| W
i -

}

This mapper can be seen as an alternative as using the later
mentioned Delaunay tessellator. SymMapper as the advantage
of delivering surface with a user choosen grid with possible
high resolution and smooth curves. However it might require
spending time on SVM parameter tuning.

il
it e

Grids

A Grid is able to use Mapper to generate 3d coordinates. Their actual implementation can generate any
mesh as soon as their exist a Tessellator able to handle their output. In the example below, we generate
points standing on an orthogonal grid, for an identical X and Y range, with 50 grid steps:

Range range = new Range(-150, 1590);
int steps = 50;
OrthonormalGrid grid = new OrthonormalGrid(range, steps, range, steps);

Next section explain how to build surfaces from grid-generated or non-grid-generated input points.

1https://qithub.com/izy3d/izy3d—svm—mapper

Surface defined by input points

Tessellation
Tessellation is the process of creating polygons out of a set of input coordinates, Jzy3d supports several
Tessellator strategies as explained hereafter.

Orthonormal tesselation
* OrthonormalTessellator is able to build surface polygons
assuming the input data represents nodes of an orthogonal
mesh.

* RingTessellator is an extention of OrthonormalTesselator

that allows cutting surface according to a min and max radius. R
Tesselating a surface based on the preceding mapper and grid is simply Vo
, . hSR
achieved by calling: ‘t"
<

Shape surface = Builder.buildOrthonormal (grid, mapper);
or
Shape surface

Builder.buildRing(grid, mapper, 20f, 50f);

One may also build surfaces dedicated to large datasets. These are
built using CompileableComposite, a drawable object able to compile
itself as a GL display list, and then make use of this prebuilt GL code for
all following rendering:

Shape surface = Builder.buildOrthonormalBig(grid, mapper);

See the demos.surface.big package.

Delaunay: a constraint free surface tessellator

One may require to build a surface using a random set of points. For
this use case, a Delaunay tesselator has been implemented using JDT?
to compute the tesselation of an unordered set of points.

Delaunay algorithm, which details won’'t be covered here, is able to
compute a good triangulation for points given as follow:

Shape surface = Builder.buildDelaunay(coords);

See the demos.surface.delaunay package.

The below schema summarize all previsousy mentioned chainable components :

Mapper » Grid »| Tessellator

| | BufferedlmageMapper L OrthonormalGrid | { OrthonoralTessellator
| | ParametrizedMapper L RingGrid L RingTessellator

L SvmMapper L{ DelaunayTessellator

2http://code.google.com/p/jdt/

Surface defined by polygons

You can build any shape by defining raw polygons by yourself as shown in the bellow code:

double [][]mesh = new double[][] {{.25, .45, .20},
{.56, .89, .45},
{.6 , .3, .71}
List<Polygon> polygons = new ArrayList<Polygon>();
for(int 1 = @; i < mesh.length -1; i++){
for(int j = 0; j < mesh[i].length -1; j++){
Polygon polygon = new Polygon();
polygon.add(new Point(new Coord3d(i, j, mesh[i][3])));
polygon.add(new Point(new Coord3d(i, j+1, mesh[i][j+1])));
polygon.add(new Point(new Coord3d(i+1, j+1, mesh[i+1][j+1])));
polygon.add(new Point(new Coord3d(i+1, j, mesh[i+1][3])));
polygons.add(polygon);
}
}

Shape surface = new Shape(polygons);

See BuildSurfaceDemo

Scatters

Scatters are simple drawables coming in three flavors:
* Scatter: a scatter plot made of a single color, using Coord3d[] and Color[] as data model
* MultiColorScatter: a scatter plot painted by a Colormap, using Coord3d[] as data model

* MultiColorScatterList: a scatter plot painted by a Colormap, using List<Coord3d> as data
model

The below code let you create a RGB scatter:
Coord3d[] points = new Coord3d[size];

Color[] colors = new Color[size];
for(int i=0; i<size; i++){

x = (float) Math.random() - ©.5f;
y = (float) Math.random() - 0.5f;
z = (float) Math.random() - ©.5f;

a = 0.25f;
points[i] = new Coord3d(x, y, z);
colors[i] = new Color(x, y, z, a);

}

Scatter scatter = new Scatter(points, colors);

See demos.scatter

Histograms & bar charts
Bar charts can be build easily using HistogramBar, which is basically a Composite made of one Tube and
two closing Disk. The below code shows how to create drawable bars:

Color color = Color.random();

HistogramBar bar = new HistogramBar();
bar.setData(new Coord3d(x, y, @), height, 10, color);
bar.setWireframeDisplayed(false);

See demos.simplebarchart

Chapter 4 : Colormaps

Overview
The API provides a set of Colormaps that can be used to paint objects that implement IMultiColorable
(i.e. almost all primitives). There are a few objects with different roles:

* Colormaps are functions that generate a RGBA color for a given XYZ point.
* AcColorMapper applies a Colormap to an object with a given Z range.
* AcColorBarLegend draws the Colormap, next to the chart, with tick annotations.

The framework already provides the following colormaps:

ColormapGrayscale

ColormapHotCold

ColormapRainbow

ColormapRGB

ColormapRedAndGreen

ColormapWhiteBlue

ColormapWhiteGreen

ColormapWhiteRed

A colormap basically implement:
public Color getColor(IColorMappable colorable, float x, float y, float z)

The below schema shows how a colormap computes a color based on the three RGB components: each
component exists in a given Z range and is added to all other components to produce a color.

R=0.5V=0.5 B=0

Note that a colormap direction can be toggled by calling:

colormap.setDirection(false)

Apply a colormap to a drawable

A ColorMapper let you apply a Colormap to a MultiColorable object. It needs to know the Z range to be
used in order to span the Colormap colors. Any point or polygon standing out of that range will have the
«lowest color» under the minimum Z value, and «highest color» above the maximum Z value.

surface.setColorMapper(new ColorMapper(new ColorMapRainbow(), -5, 5));

A ColorMapper also supports a color factor enabling to multiply all colormap colors with a color. It is
especially usefull to apply an alpha effect as follow:

ColorMapper mapper = new ColorMapper(new ColorMapRainbow(), -5, 5, new Color(1,1,1,.5f))

Create a colorbar legend

When painting an object with a Colormap and ColorMapper, you will most probably wish to have this
colormap represented by a colorbar in a legend. This is the purpose of the ColorBarLegend object that
keeps track of the object scale changes, and that remains cleanly layed out by the ChartView. To add a
legend, just attach a colorbar to your drawable object as follow:

IAxelLayout layout = chart.getView().getAxe().getLayout();
ColorbarLegend colorbar = new ColorbarLegend(surface, layout);
colorbar.setMinimumSize(new Dimension (100, 600));
surface.setLegend(colorbar);

In its implementation, a ColorBarlLegend uses a ColorbarImageGenerator that will create a Java2d
BufferedImage according to current drawable’s ColorMapper.

Additionally, the Colorbar can be given an ITickProvider and ITickRenderer (usually those already
defined to configure the AxeBox) to generate a BufferedImage with tick annotation next to the colorbar.

ColorbarLegend(AbstractDrawable parent,
ITickProvider provider, ITickRenderer renderer,
Color foreground, Color background)

The roles of ITickProvider and ITickRenderer are given in the “Axis layout” chapter. Additional
information on the ChartView layout are given in the “View layout” chapter.

Chapter 5 : Layout

The chart layout is controlled at three levels:

* the view layout, that lets you set various stretching policies, background settings, tooltips and post
renderers for the chart object.

* the canvas layout, that lets you arrange several 3d and 2d views.
* the axe layout, that lets you define tick values and labels for each axis.
View Layout
Jzy3d provides controls that let you improve the rendering of the 3d scene in its parent canvas. For all

following settings, you can activate the display of a debug grid to understand how the viewports (GL scene or
GL image, e.g. ColorbarLegend) are actually displayed by OpenGL. Simply call:

chart.getView().getCamera().setScreenGridDisplayed(true);
Maximize

The default GL scene window is a square that will try to occupy be the largest possible space. If the target
panel is not a square, the scene will remain centered on the widest dimension.

To let the scene stretch over the complete panel as in the second chart, simply call:

chart.getView().setMaximized(true);

Squarify

Squarifying is an automatic scaling that lets a
complete scene fit into a cube. This is the desired
behavior in most cases.

{T1000.00

One may wish to keep scales unchanged, as the
picture standing on the right. To do so, just
deactivate this setting through:

chart.getView().setSquared(false);

Text embedding

It is possible to force Jzy3d to always stretch the 3d scene so that all axes tick labels always stand IN the
canvas. The feature is mainly useful for enhancing a 2d view, but rotating a 3d scene in this mode is
unconfortable since the scene scale may change in an undesired way. For working with that feature, edit:

View.MAINTAIN_ALL_OBJECTS_IN_VIEW = true;

Orthogonal and perspective projections

One can specify a projection mode, either orthogonal or perspective.
Although most of the scientifical plots use an orthogonal projection (default),
plotting with a perspective lets you give more importance to what is in front of
the viewpoint. To enable a specific projection: ﬁﬁ“@’:

chart.getView().setCameraMode (CameraMode . {ORTHOGONAL
| PROJECTION});

View constraints
The view can be constrained to only support specific

viewpoint change. One may for example use the
ViewPositionMode.PROFILE to allow rotation only
around the Z axis when using the mouse, and keep X and
Y axis rotation to 0.

ViewPositionMode.TOP is a mean to display 2d charts.
In the top view, the camera's view direction stands on the Z
axis at X,Y=0.

The default constraint is FREE to enable any viewpoint around the center of the scene. Changing the
constraint mode is achieved by:

chart.getView () .setViewPositionMode (ViewPositionMode. {FREE |TOP|PROFILE}) ;

Viewpoint
In Jzy3d, the camera is always looking at the center of the scene, and rotate around this central point. The
viewpoint, i.e. the position of the Camera is defined by a polar coordinate relative to the center of the scene.

* xis the horizontal angle in [0;2*pi] (x can have any value, the view considers x = x % 2*pi)

* yis the vertical angle in [-pi/2;pi/2] (the view consider y = -pi/2 if y < -pi/2, y = pi/2 if y < pi/2)

* zis the distance from camera to center. It is adjusted by the View to let the scene fit in the display.

chart.getView().setViewpoint(new Coord3d(...));

Post renderers
Adding other kind of metadata on the main view can be done easily using the post renderers, which provide
a java2d Graphics for drawing text, images, and 2d primitives, relative to the panel size.

As shown by the , one accesses a Graphics2d this way:

chart.addRenderer(new Renderer2d() {
public void paint(Graphics g) {
Graphics2D g2d = (Graphics2D) g;
g2d.setStroke(new BasicStroke(4.0f));
g2d.setColor(java.awt.Color.BLACK);
g2d.drawRect(10, 50, 100, 100);
}
1

Background

It is possible to edit the view background by providing a background image:

BufferedImage i= FileImage.load(«data/bg-demo.jpg»);
chart.getView().setBackgroundImage(i);

Background is only resized when it is too large to stand in the canvas, but not when the canvas is larger.
The background color can be changed as well:
chart.getView().setBackgroundColor(Color.BLACK);

Tooltips

You can accumulate tooltips on the view:

IntegerCoord2d screen = new IntegerCoord2d(10,10);
Coord3d world = new Coord3d(20,20,20);
CoordinateTooltipRenderer r = new CoordinateTooltipRenderer («X»,«Y»,«Z»,
screen, world, true);
chart.getView().addTooltip(r);

and clear them:

chart.getView().clearTooltips();

Chart layout
All the settings we have covered above are related to the root View object, which only handles the layout of a
scene content. A Chart uses the extended class ChartView that is able to arrange several visual block in
the same canvas.

CIassc_as that implemenlt AbstractViewport pr_ovide method AbstractViewport
to define where an object should be mapped in the current |
canvas. Let’s mentioned: [|
* AView's Camera is the object that let you define how Camera ImageViewport
to display the chart’s scene in the canvas. I
Legend

* A ColorbarLegend, relies on an ImageViewport, I
which is able to map a Java 2D BufferedImage on
the canvas rendered by OpenGL.

ColorbarLegend

As shown on the right, the ChartView simply computes
horizontal slices for each AbstractViewport. One can debug
each viewport by enabling: e

viewport.setScreenGridDisplayed(true); J i
To inject a custom chart layout, see the chapter “Component K Lo L
injection”.

™)
R T (L
N . 500000

Axis Layout i
The View comes with a box embedding the scene with
value annotations. The box can be turned on/off by using:

f—1.50e-03

chart.getView().setAxeBoxDisplayed(false);

T, =1 00e~03

Value

One can access the IAxelLayout that gathers, for each X,
Y, Z axis:

{—5.00e-04

* all labeling policy settings (axis label and tick label
properties) defined by ITickRenderers.

o J=0. 008400

* all ticks to render defined by ITickProvider.

* grid and face colors.

121012012
040212013

3110572013

2410972013
Date.

A concrete ITickProvider must implement generateTicks(float min, float max, int steps) that
returns an array of values indicating selected ticks for the axe range currently. Here are the already existing
tick providers:

* RegularTickProvider generates a fixed number of ticks in any range.
* SmartTickProvider generates a readable number of ticks (between 3 to 5).
* StaticTickProvider holds a list of tick to display, whatever is the actual view range.

A concrete ITickRenderer must implement format(float value). Here are the already existing tick
renderers:

* DateTickRenderer renders a tick value as a date, according to a desired date format.
* ScientificNotationTickRenderer renders a tick value like “1.5e-03".
* FixedDecimalTickRenderer renders a tick value with a predefined precision.

One may for example create a TrigonometricTickRenderer with a joint TrigonometricTickProvider to
draw ticks such as 0, PI/2, PI/3...

See the demos.axelayout package to see how to edit the whole AxeBox layout:

chart.getAxelLayout().setXAxelLabelDisplayed(false);
chart.getAxelLayout().setXTickLabelDisplayed(false);
chart.getAxeLayout().setYAxeLabel(«Date»);
chart.getAxelLayout().setYTickRenderer(new DateRenderer(«dd/MM/yyyy»));
chart.getAxeLayout().setZAxelLabel(«Ratio»);
chart.getAxeLayout().setZTickRenderer(new ScientificNotationRenderer(2));

Please note that you can set a global color for the entire axe by calling:

chart.getView().getAxe().getLayout().setMainColor(Color.GRAY);

Chapter 6 : Contour charts

Overview
The central tool to use is an IContourPictureGenerator that can compute various kinds of contour
pictures:

e contour lines
e filled contour
* height maps

The MapperContourPictureGenerator is its primary implementation and works for surface defined by a
Mapper. Thus, no contour function can be computed and drawn for surface built manually, or from a list of
input points (e.g. Delaunay tessellated surfaces).

The contour can be computed according to:
* an array of level values
* anumber of levels to draw

Once the contour is computed, its image is built and stored in a textured plane, in order to be added to a
special axe box, ContourAxeBox, able to draw an image on the ground.

To paint contour lines or areas, one must use a IContourColoringPolicy, that returns an RGB color code
according to a Z value. The provided implementation, DefaultContourColoringPolicy, supports a
ColorMapper as input in order to be able to draw the contour function of a IMultiColorable object.

Configuration
Here is a sample code able to generate a contour chart:

JzyFactories.axe = new AxeFactory(){
public IAxe getInstance(BoundingBox3d box, View view) {
ContourAxeBox axe = new ContourAxeBox(box);
axe.setView(view);
return axe;

}
}s

IContourGenerator contour = new MapperContourGenerator(mapper, xrange, yrange);
DefaultContourColoringPolicy policy = new
DefaultContourColoringPolicy(myColorMapper);

Chart chart = new Chart(quality, type);
ContourAxeBox cab = (ContourAxeBox)chart.getView().getAxe();
cab.setContourImg(contour.getContourImage(policy, 400, 400, 10),xrange,yrange);

Where
* 400 and 400 are the number of pixels of the output image.
* xrange and yrange the ranges used for the mapper.
* 10 the number of required levels.

Itis also possible to specify a list of desired levels as follow:

double sortedContourlLevels[]={-500.0,-200.0,0.0, 100.0, 300.0, 400.0},;
BufferedImage img = contour.getContourImage(policy, 400, 400, sortedContourlLevels);

Note that you can display the contour image in a separate window using:

BufferedImage image=((ContourAxeBox)chart.getView().getAxe()).getContourImage();
ChartLauncher.openImagePanel(image, new Rectangle(800,600,400,400)),

Contour lines

Method getContourImage(...) returns a default contour image
drawing contour lines.

0 0%

cab.setContourImg(| 'MW

contour.getContourImage(T G
new DefaultContourColoringPolicy(myColorMapper),

400, 400, 10),

i
xrange, yrange
)s

8%

RS
R
RS
SRS o
o

3
2228

2
“‘

SR
e
St etielae
s

o

S

%

5SS

s
o
5

Y,
:%@
(KK
K

08
s

o

QS s
2SS
SIS
SOSISeS
SIS
S

5
<
S,

25
pattes
e
5

2

00
%
i

35
eSaetes
e
S
=
o

e
2
R
=
S

KK

25
=
RS

s
53

5SS
x5
e
=
s

25

3
R

RIRRE

o

:
5
:

3
32
S5t
2
5

N

3
2

X

X

S

%S
B

s

(5
G

See: org.jzy3d.demos.contour.ContourPlotsDemo

) 7000
-
80,00 Y 80.00

- %

X 80.00

Filled Contour

Method getFilledContourImage(...) returns a contour region
image.

9SS
55

=
=
55

e

i

S
%
e

9%
#?ﬁW&ﬁ
0,

cab.setContourImg(
K
AT
O 0%
0, %u, B
(7

contour.getFilledContourImage(
new DefaultContourColoringPolicy(myColorMapper), "S;O.:""o,;,,;,';;,
{/

33
58S
0“"
X

.
XIS
foSie ety

3
S

z ° i 4 *4:"&
400, 400, 10),
xrange, yrange

)5

e
=
o
5
e
oo
"'

K
e
o

s
S
SSSeteeiee
e

o8
S
SRS
S5
e
O

5
S0
ety
SIS,
s
S5

e

o

3
-
s
S
<
55

3%
53
S

o
X
55

o"‘
o
:::
s
o

X
X

2
LR
2
R

5

¢

X
e

%

See: org.jzy3d.demos.contour.FilledContourDemo

7000

a7 9000

Height Map Contour

Method getHeightMap(...) applies the Z values returned by a
mapper able to generate heatmap-like graphics.

cab.setContourImg(
contour.getHeightMap(

:) j
new DefaultContourColoringPolicy(myColorMapper), . _ ”‘f';’:f',",":':ﬁ,;
400, 400, 10), i

Ao Ui
Xxrange, yrange oot i

S

o
s
oSt

2
%0

(58

35
S

S
S
1?
ST
o
S5

s
RIS
SR
e e
S
SIS

R
22
3
52
S5
5
oSS
S

o
e
<

s

22
R
R
R
R
s
S5
S5

S
S
X

S
o

<3
<5

o5

5

5
5
:

%
%
%

See: org.jzy3d.demos.contour.HeightMapDemo

Va
8000, s w000

X 80.00

Chapter 7 : Controllers
Mouse controllers

Controlling camera
The CameraMouseController let you control the Camera eye position as follow:

* Rotate: Left click and drag mouse.

* Scale: Roll mouse wheel.

* Z Shift: Right click and drag mouse.

* Animate: Double click will start the thread controller that rotates the view.
To add a mouse controller, simply call:

chart.addMouseController();

You can still concurrently edit the viewpoint by yourself by calling:

chart.getView().setViewpoint(new Coord3d(...));

See the Layout chapter for more information about viewpoint value range.

Interaction with drawables

One may also interact with drawables (for example making a selection in a scatter), by using dedicated
drawable selectors. There might be one mouse selector implementation per kind of Selectable object. This
kind of mouse controllers have the following role:

* Processing selection according to a selection window.
* Drawing a selection rectangle.

Once a selector is built, one can still control the camera with mouse by using a DualModeMouseSelector
that let you toggle between selection and rotation behavior by holding the C key:

ScatterMouseSelector selector = new ScatterMouseSelector(scatter);
DualModeMouseSelector mouse = new DualModeMouseSelector(chart, selector);

One may also use a MousePickingController that let you enable a different strategy for processing mouse
selection. See the chapter “Interactive objects” for more details.

AbstractCameraController AbstractMouseSelector MousePickingController
—| CameraMouseController 7 ScatterMouseSelector PickinaSupport
CameraKeyController SphereMouseSelector

— CameraThreadController

@
DualMouseController 7

Threaded controllers

You can add default threaded controllers that enable a continuous cube spin, and that are started or stopped
by a mouse double-click. You can also make your own thread controller as follow:

CameraThreadController thread = new CameraThreadController();
chart.addController(thread);

Keyboard controllers
Similar to the mouse controller, you can enable a keyboard controller to perform the following view changes:

* Rotate: Arrows
* Scale: Shift + arrows left & right
* Z Shift: Shift + arrows up & down

To add a keyboard controller, simply call:
chart.addKeyController();
Note that the key controllers can only receive key events if the canvas is focused. You need to make a first

click on the chart, or to programmatically force the focus to your chart panel to have the key controller
enabled.

If you wish to implement your own controller see the Component Injection.

Chapter 8 : Interactive objects

Overview
Interaction with 3d content can be achieved using two methods:

* The first consists in rendering a very small portion of the scene around the mouse pointer, and
analysing which objects stand in that tiny window. This method is efficient for simple mouse crossing.
We call objects supporting this method Pickable.

* The second consists in retrieving the 2d projection of the complete object and analyzing what the
mouse should do with it. This method is suitable for global scene analysis and allows to deal with a
rectangle selection. For example, selecting a rectangle region of a 3d scatter plot requires to know
the complete projection in advance, and to decide which dots stand in or out of the mouse selection
rectangle as soon as this rectangle dimension changes. We call objects supporting this method
Selectable.

Vertex 1/e

S
BRI
;}L M‘q\ : NG o | "& iy) > ¢ | —0.800000

N

0.8000 0.6000

Picked objects

Picking requires to register every pickable polygon into a PickingSupport instance. Indeed, once the
mouse is clicked, PickingSupport retrieves a collection of polygon IDs that can be found below the mouse
pointer. PickingSupport defines a pixel area under which content is detected (default is a 10 x 10 area). To
illustrate how to enable picking, we will discuss elements you may find in the demo
demos.graphs.PickableGraphDemo.

First, we deal with a set of Pickable objects: our graph is made of PickablePoints (PickablePoint is
simply an extension of Point that implements Pickable, in other words it support getId/setId).

Second, we use a dedicated MousePickingController and override method mousePressed() to apply
picking with the following lines of code (simplified):

public void mousePressed(MouseEvent e) {
pick(e);
}
public void pick(MouseEvent e) {
picking.pickObjects(gl, glu, view, graph, new IntegerCoord2d(e.getX(),yflipped));
}

To get notified by a successful picking, we then register a listener:

mouse.getPickingSupport().addObjectPickedListener(new IObjectPickedListener() {
public void objectPicked(List<? extends Object> vertices, PickingSupport picking) {
for(Object vertex: vertices)
graph.setVertexHighlighted((String)vertex, true);
chart.render();

})s

Last we have to register our PickablePoints to the PickingSupport instance:

public void setGraphModel(IGraph<V,E> graph, PickingSupport picking){
for(V v: graph.getVertices()){
PickablePoint p = newPoint(v);
picking.registerDrawableObject(p, Vv);

}
}

Selectable objects

Selectable objects let you easily get 2d projections of any geometry. You can then work the way you want
with that projection. You may for example project a complete scatter plot, or only anchors of a shape model
such as surfaces.

Such objects must implement:

public void project(GL gl, GLU glu, Camera cam)

The implementation will mainly consist in calling and caching the 2d projection. Let's see an example with
SelectableScatter:

public void project(GLs gl, GLU glu, Camera cam) {
projection = cam.modelToScreen(gl, glu, getData());

}

The scatter must have an associated mouse controller such as ScatterMouseSelector in charge of:
* calling a projection of all the instances of Selectable objects appearing in the scene graph
* retrieving the projected scatter, and verify how it matches the current selection rectangle
* changing highlighted status of each point to have them rendered differently.
* drawing the current selection rectangle
This is simply implemented as follow:

protected void processSelection(Scene scene, View view, int width, int height) {
view.project();
Coord3d[] projection = scatter.getProjection();
for (int i = @; i < projection.length; i++)
if (matchRectangleSelection(in, out, projection[i], width, height))
scatter.setHighlighted(i, true);

}

protected void drawSelection(Graphics2D g2d, int width, int height) {

drawRectangle(g2d, in, out);

In the same fashion, a ScatterSphere has an associated SphereMouseSelector, that provides a selection
renderer able to draw the convex hull of the selected sphere.

Keep in mind you remain responsible of calling project() once required. Having an ever up to date
projection available for example requires customizing the view to perform such projection as soon as the
viewpoint changes or the canvas dimensions change.

Projections must be used with care and optimally scheduled when working with large data. SelectableView
is an extension of View able to update all projections at each any call to render(...). When using it take
care to the chart rendering model (continuously/on demand, see section Chart Quality).

Chapter 9 : Scene graph

Jzy3d has a very minimal scene graph, mainly intended to:

* deal with polygon ordering for translucent objects (see chapter Transparency)

* provide global scaling of drawable objects
You will most probably never have to deal with such details, unless you wish to apply custom transforms or
polygon ordering methods.

Transforms

Transformations for Drawables
Every drawable object in jzy3d is globally transformed by calling setTransform(Transform),that is
commonly used by the View to let a scale and rotate a complete Scene.

Another transformation can be applied specifically to a drawable via setTransformBefore(Transform),

Each call to the draw(...) method of a Drawable begins by executing the held transforms. Executing
transformations:

* always start by reloading the identity matrix (thus ensuring any object can be freely transformed
however you transform the other objects of the scene graph).

* then execute the sequence of Transformer, either a Scale, a Translate, or a Rotate.
o Self transforms first
o Global transforms
Animating a drawable transformation

The code below shows how to define a rotation axis to a specific shape, and how to start a rotation applying
only to the object and not to the complete scene.

// Define rotation around Z axis

Rotate r = new Rotate(25, new Coord3d(9, 0, 1));
Transform t = new Transform();

t.add(r);

shape.setTransformBefore(t);

// Let the wheel rotate

Rotator rotator = new Rotator(10, r);
rotator.start();

Chapter 10 : Animations

Remapping surfaces

Surfaces built with a mapper can be easily remapped, i.e. that having their Z coordinates updated due to a
change in the z=f(x,y) function defined by the Mapper.

The code below shows a SingleParameterMapper that evolves with IncreaseParamRemapTask :

SingleParameterMapper mapper;
Shape surface;

RemapTask remap;

Thread thread;

public void init(){

mapper = new SingleParameterMapper(0.999){

public double f(double x, double y) {

return 10*Math.sin(x*p)*Math.cos(y*p)*x;

}
s
surface = ...
remap = new IncreaseParamRemapTask(surface, mapper);
chart = AWTChartComponentFactory.chart(getCanvasType());
chart.getScene().getGraph().add(surface);
thread = new Thread(remap);
thread.start();

}
Where the implementation of the remap task is defined with :

public class IncreaseParamRemapTask extends AbstractRemapTask {

public void remap() {
mapper.setParam(mapper.getParam() + 0.0001);
mapper.remap(surface);

}

And its abstract class defines

public void run() {
while (true) {

try {
Thread.sleep(1);

} catch (InterruptedException e) {}
time.tic();

remap();

time.toc();

info = Utils.num2str(time.elapsedSecond(), 4) + "s to remap surface";

}

See: org.jzy3d.demos.animation.AnimatedSurfaceDemo

Adding and removing drawables dynamically

One can add and remove elements from the scenegraph by using its add(...) and remove(...) methods.
These two methods can also be called with a boolean flag that indicates if the view bounds should be
updated immediately or not.

Not updating the view immediatly can be usefull if you need to add lot of new objects. It is indeed better to
add them all, and to update the bounds a single time once all new objects are in the scenegraph.

chart.getScene().getGraph().add(linel);
chart.getScene().getGraph().add(line2);
chart.getScene().getGraph().add(line3);
chart.getView().updateBounds();

or

chart.getScene().getGraph().add(line, true);

See: org.jzy3d.demos.animation.AddRemoveElementsDemo

Chapter 11: Transparency
Handling transparency in a chart deserve a few explanations. Indeed, transparency is not natively handled
by OpenGL and is performed by various algorithms with various results.

Handling transparency by sorting polygons

In this approach, blending is achieved by first rendering « what
stands far », and then « what stands near ».

Farest polygon
rendered first

For that reason, the scene graph needs to know the camera
position, and then rank all polygons to know their order relative to
the eye. Guessing the appropriate order is a complicated task, and
Jzy3d only computes the distance between the camera eye, and
each polygon barycenter.

Nearest polygon
rendered last

AbstractComposite objects, such as Shapes, are good primitives
for such kind of rendering, since they can be decomposed into
several atomic AbstractDrawable by the scene graph.

However, this method has two drawbacks:

* First, working with numerous polygons will lead to bad
rendering performances, as the polygons’ decomposition
and ranking will be computed at each frame update.

* Second, the method is not suitable when working with large
polygons, or with drawables of very different dimensions
(see an example of visual cue on the right).

Handling transparency with a depth peeling algorithm
Depth peeling algorithms allow an order
independent transparency of intersected
translucent objects. The left picture shows
translucent cubes that are rendered by
ordering their distinct faces. The right
picture shows the same cubes rendered by
a dual depth peeling algorithm.

Our implementation of depth peeling is
based on works made public by L. Bavoil
(NVIDIA) proposing several variants:

* Dual depth peeling.

* Front to back peeling.

* Weighted average peeling.
* Weighted sum peeling.

Peeling is available as an extension® of the
API.

Hints with transparency
Remember that an object holding colors with alpha!=1 will not appear translucent if you do not instanciate a
Chart with a Quality >= Advanced.

When using a view configured with CameraMode.PERSPECTIVE in a translucent chart (i.e. initialized with
Quality.Advanced or higher), it is required to disable a polygon property named “Polygon Offset Fill”,
otherwise the shape does not render properly. To do so, simply call this static method:

Polygon.setPolygonOffsetFillEnable(surface, false);

8 https://github.com/jzy3d/jzy3d-depthpeeling

Chapter 12 : Events

The API triggers its own events letting you know how the general settings of the chart changes.
View events

View point changed
One may register a IViewPointListener to get notified by a ViewPointChangedEvent once the viewpoint
changes:

chart.getView().addViewPointChangedListener(new IViewPointChangedListener() {
public void viewPointChanged(ViewPointChangedEvent e) {
System.out.println(«viewpoint changed to « + e.getViewPoint());
}
1)

View point reached top or bottom
To know that the user moved the chart to a top or bottom view. To get such notification:

chart.getView().addViewOnTopEventListener(new IViewIsVerticalEventListener() {
public void viewVerticalReached(ViewIsVerticalEvent e) {
System.out.println(«view from top or bottom»);
}
public void viewVerticallLeft(ViewIsVerticalEvent e) {
System.out.println(«left top or bottom»);

}
})s

Controller events

A mouse controller is able to notify its listeners that it performed a view change. Indeed, adding a
ControllerEventListener let you receive events with informations on the kind of changed value, and the
new value:

mouse.addControllerEventListener(new ControllerEventListener() {
public void controllerEventFired(ControllerEvent e) {
System.out.println(e.getType + « « + e.getValue());
}

1
Where type is a ControllerType that may either be ROTATE, ZOOM, SCALE, or PAN.

Drawable events
One may receive notifications concerning a drawable object property change.

scatter.addDrawablelListener(new IDrawablelListener(){
public void drawableChanged(DrawableChangedEvent e) {
switch(e.what()){

case DrawableChangedEvent.FIELD_COLOR: ... break;
case DrawableChangedEvent.FIELD_DATA: ... break;
case DrawableChangedEvent.FIELD_DISPLAYED: ... break;
case DrawableChangedEvent.FIELD_METADATA: ... break;
case DrawableChangedEvent.FIELD_TRANSFORM: ... break;

})s

Chapter 13 : Maths and statistics package

The API provides a couple of math objects.

Coordinates
Coord3d uses floats and allows performing these operations:

add(Coord3d), sub(Coord3d), mul(Coord3d), div(Coord3d) returning a new instance

add(float value), sub(float value), mul(float value), div(float value)
addSelf(Coord3d), subSelf(Coord3d), mulSelf(Coord3d), divSelf(Coord3d)
distance(Coord3d) compute the distance.

dot(Coord3d) compute the dot product.

normalizeTo(Coord3d) and getNormalizedTo(Coord3d) which return a new instance.
interpolateTo(Coord3d, float ratio), performs a linear interpolation between current and given point.
negative() returns the negative coordinate.

polar() converts the current cartesian coordinate into a polar coordinate.

cartesian() converts the current polar coordinate into a cartesian coordinate.

The Coord2d object provides a subset of these 3d operations and is mainly here as a utility.

Bounding boxes
BoundingBox3d lets you append a list of coordinates (or also other bounding boxes) to get an overall bound.
The object indeed holds values xmin, xmax, ymin, ymax, zmin, zmax that are updated over time.

Once created, a bounding box is in an invalid state until one adds a first coordinate or bound. Appart from
providing final X, Y and Z min/max values and range, BoundingBox3d provides useful methods:

valid() returns true if the bounding box has been given at least one point or box to bound.
margin(float value) returns a new bounding box with an added margin on each side (x min, x max, etc)
selfMargin(float value) performs the same on the current bounding box.

scale(Coord3d) returns a new bounding box with each value multiplied by the given value.
shift(Coord3d) returns a new bounding box with each value incremented by the given value.
intersect(BoundingBox3d) returns true if both bounding boxes intersect.

contains(BoundingBox3d) returns true if this bounding box embed (or is equal to) the given box.
getRadius () returns the half diagonal of the box.

getCenter() returns the coordinates of the center of the box.

getVertices() returns the corners of this bounding box has a List<Coord3d>

The BoundingBox2d object provides a subset of these 3d operations and is mainly here as a utility.

Statistics and array processors

As Jzy3d first motivation was to clone the Matlab™ plot3d tool for java, you may find a couple of useful array
processing methods that are inspired by Matlab™. We simply provide a listing of these methods, assuming
their meaning should be clear by reading the methods' name. Please refer to the javadoc for more
information.

org.jzy3d.maths.Array
append(int[], int)
atLeastOneNonNaN(double[])
clone(double[])
clone(double[], int)
clone(float[])
clone(float[], int)
clone(int[])

clone(int[], int)
countNaNs (double[])
filterNaNs(double[])
find(double[], double)
find(int[], int)
flatten(double[][])
flatten(double[][], boolean)
flatten(float[][])
flatten(float[][], boolean)
merge(double[], double[])
print(char[])
print(Coord3d[])
print(double[])
print(double[][])
print(float[])
print(float[][])
print(int[])
print(int[][])
sortAscending(Date[])
sortAscending(double[])
sortAscending(float[])
sortAscending(int[])
sortDescending(Date[])
sortDescending(double[])
sortDescending(float[])
sortDescending(int[])
toColumnMatrix(double[])
toColumnMatrix(float[])
toColumnMatrixAsDou-
ble(float[])

org.jzy3d.maths.Statistics
mad(double[])

max(double[])

max(float[])

max(float[][])

max(int[][])

maxId(int[])

mean(double[])
mean(float[])
median(double[], boolean)
min(double[])

min(float[])

min(float[][])

min(int[][])
minId(double[])
minId(float[])

minId(int[])
quantile(double[], double[])
quantile(double[], double[],
boolean)

std(double[])
variance(double[])

org.jzy3d.maths.Utils
abs(double[])
blanks(int)
dat2num(Date)
dat2str(Date)
dat2str(Date, String)
max(Date[])
min(Date[])
num2dat(long)
num2str(char, double)
num2str(char, double, int)
num2str(double)
num2str(double, int)
sum(double[])
sum(int[])
vector(double, double)
vector(double, double,
int)

vector(int, int)
vector(int, int, int)

Chapter 14 : Integrate the chart in your application

Understanding canvases

As mentioned in the Chart chapter, you can
specify a canvas type in a chart ICanvas
constructor. Specifying either awt, swing, | ' |

newt or offscreen wil lead to the IScreenCanvas OffscreenCanv
initialization of a different ICanvas able to |
work with a given windowing toolkit. [| I

« CanvasAwt is an heavywright AWT CanvasAWT CanvasSwing CanvasNewt

canvas (default)

* CanvasSwing is a lightweight swing canvas that supports other JComponents displayed on top of it
(note that it is slower than CanvasAwt).

* OffscreenCanvas makes use of a GLPBuffer to render a chart without any displayed frame.

* CanvasNewt is an experimental IScreenCanvas relying on Newt, a promising windowing toolkit
introduced by Sven Gothel in JOGL 2. Note that it has its own mouse and key controllers that are
not compatible with other canvases.

The bellow schema shows how each canvas can be embedded in an existing application. Note that SWT
charts simply rely on a Bridge class able to integrate a CanvasAWT into an SWT Component.

CanvasSwing > JPanel SWING

CanvasAWT » Panel AWT

CanvasNewt >< Bridge Component SWT
OffscreenCanvas

When working with the samples, you will use ChartLauncher.openChart(...), but this won't let you
include the chart in an existing application. To add the chart, retrieve the canvas as shown in the examples
bellow.

AWT applications

This assumes you created your chart by calling AWTChartComponentFactory.chart()

Frame frame = new Frame();
frame.add((java.awt.Component)chart.getCanvas());

NEWT for AWT applications

Jzy3d supports Newt, a windowing toolkit introduced by JOGL, designed to be fast and offer more portability
across platforms. The Newt Canvas can be enabled by calling the component factory as follow:
AWTChartComponentFactory.chart(«newt»)

As the method call suggests the underlying canvas will be a Newt Canvas for AWT.

Swing applications
This assumes you created your chart by calling SwingChartComponentFactory.chart()

JFrame frame = new JFrame();
frame.add((javax.swing.JComponent)chart.getCanvas());

SWT applications
This assumes you created your chart by calling AWTChartComponentFactory.chart(), as the bridge to
SWT uses chart based on an AWT canvas:

Display display = new Display();

Shell shell = new Shell(display);

shell.setLayout(new FillLayout());

Bridge.adapt(shell, (java.awt.Component)chart.getCanvas());

Offscreen applications
No need to open a frame to have a working chart. One can create invisible charts by calling:

Chart chart = AWTChartComponentFactory.chart(quality, «offscreen»);

That creates a 800 x 600 chart. One can also specify custom chart dimensions by using the arguments:

Chart chart = AWTChartComponentFactory.chart(quality, «offscreen, 1200, 8600»);

Afterwards, one can generate an image as shown in the next section.

Screenshots
It is possible to retrieve a BufferedImage to do whatever you want with: serialize to disk, use for reporting,
or include in a panel. The following piece of code shows how to save a screenshot as a PNG image file:

ImageIO.write(chart.screenshot(), «png», new File(«data/screenshot.png»));

Note that you can generate a screenshot with offscreen and onscreen charts.

Testing charts
The API package org.jzy3d.junit provides usefull tools for testing charts:

* ChartTest can run a chart and assert if it is similar to an image file pixel by pixel. If no comparison
image exist, an image file is generated and will be used for the next test.

* The Replay package is a work in progress to record and replay macros with mouse and keyboard
actions. Running interaction tests ensures mouse and keyboard command vyield to the same visual
result.

Chapter 15 : Component injection
You may need to customize some of library components. It is possible to easily inject your own
implementations among the following kind of objects:

* Scene
e View

* Axe

e Camera

e 1ICanvas

¢ IMouseController
* IKeyController

* OrderingStrategy

Selecting the appropriate component implementations for a chart requires a IChartComponentFactory.
This factory is the entry point for getting a new chart:

Chart chart = AWTChartComponentFactory.chart(getCanvasType());

As you might guess by this factory name, the component factory is also used to conveniently bundle
components for a specific windowing toolkit. As of 0.9.1, the core APl has no more dependency to AWT but
only to JOGL. This let the library be buildable for Android applications. The framework provices the following
component factories:

* AWTChartComponentFactory
* SwingChartComponentFactory
* ContourChartComponentFactory

ContourChartComponentFactory extends the AWT factory to instantiate a specific Axe implementation able
to draw the contours on the ground of the cube box. This initialization is done by the View that accesses the
factory by being a child component of the Chart.

Chapter 16 : Rendering

From canvas to drawables, there are several cascading method calls and layers that are summarized in the
schema below.

Canvas

At open & resize, or at animator update

A

Renderer3d
v
View
render(GL) (see also init(GL) clear(GL))
ImageViewport (0) Legend (5) Overlay (6)

v

Camera (1) Light (2) AxeBox (3) Graph (4)

A 4
Drawables

Thus, a typical rendering sequence:
0. Background ImageViewport rendering
1. Camera settings

Light settings

AxeBox rendering

A oD

Graph rendering
a. If activated, decomposition of composite into atomic polygons; then ranking
b. Rendering of each primitive

5. Legend rendering (ChartView only)

Overlay rendering
a. Tooltips (Java2d)

b. Post renderers (Java2d)

The schema shows rendering triggered by a Canvas, but to be complete, let's mention other components
that may trigger rendering:

* Controllers generally update the view by calling View.shoot()

* The scene Graph provides add(..) and remove(..) methods with an option letting you choose
wether you want to immediately update the view or not (default is true).

Chapter 17 : Going further with OpenGL

Those wishing to enhance Jzy3d using other OpenGL features might refer to JOGL documentation and
mainly to the two official OpenGL books available online:

* http://www.glprogramming.com/red/
* http://www.glprogramming.com/blue/

The trunk contains a copy of all examples provided in these books that were ported to java by Kiet Le
(http://www.opengl.org/code/detail/opengl_redbook samples_ported _to java_using_jogl/). This is a huge
help for diving intuitively in low level Open GL.

